Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Front Pharmacol ; 15: 1354806, 2024.
Article in English | MEDLINE | ID: mdl-38601461

ABSTRACT

Lung injury leads to respiratory dysfunction, low quality of life, and even life-threatening conditions. Circular RNAs (circRNAs) are endogenous RNAs produced by selective RNA splicing. Studies have reported their involvement in the progression of lung injury. Understanding the roles of circRNAs in lung injury may aid in elucidating the underlying mechanisms and provide new therapeutic targets. Thus, in this review, we aimed to summarize and discuss the characteristics and biological functions of circRNAs, and their roles in lung injury from existing research, to provide a theoretical basis for the use of circRNAs as a diagnostic and therapeutic target for lung injury.

2.
Crit Rev Oncol Hematol ; 196: 104325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462151

ABSTRACT

Abscopal effects are characterized by the emergence of neoplasms in regions unrelated to the primary radiation therapy site, displaying a gradual attenuation or regression throughout the progression of radiation therapy, which have been of interest to scientists since Mole's proposal in 1953. The incidence of abscopal effects in radiation therapy is intricately linked to the immune system, with both innate and adaptive immune responses playing crucial roles. Biological factors impacting abscopal effects ultimately exert their influence on the intricate workings of the immune system. Although abscopal effects are rarely observed in clinical cases, the underlying mechanism remains uncertain. This article examines the biological and physical factors influencing abscopal effects of radiotherapy. Through a review of preclinical and clinical studies, this article aims to offer a comprehensive understanding of abscopal effects and proposes new avenues for future research in this field. The findings presented in this article serve as a valuable reference for researchers seeking to explore this topic in greater depth.


Subject(s)
Neoplasms , Humans , Neoplasms/radiotherapy , Radiotherapy/methods
3.
Food Chem X ; 21: 101091, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38235346

ABSTRACT

Chemical and sensory attributes play a vital role in evaluating the quality of grapes and wines. This study compared basic physicochemical parameters, organic acids, phenolic compounds, and aroma profiles of grapes and wines of six cultivars using chemometrics. The results showed that the reducing sugar contents of Beibinghong, Gongniang, and Granoir grapes were significantly higher than those of others cultivars, whereas their juice yields were significantly lower. The phenolic compound contents in Moldova, Beibinghong, and Gongniang grape skins and wines were higher than those in others cultivars. The organic acid contents in Beibinghong grape and Dunkelfelder wine were highest. Beibinghong and Gongniang grapes and wines showed richer aldehyde and ester concentrations. Beibinghong wine obtained the highest sensory scores. Ethyl decanoate, coumaric acid, and methyl dodecanoate were characteristic variables distinguishing wine cultivars, exhibiting important contributions to their sensory characteristics. These findings were useful for viticulturists and winemakers to select grape varieties.

4.
Mycoses ; 67(1): e13680, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38214420

ABSTRACT

CIITA, a member of NOD-like receptor (NLR) family, is the major MHC II trans-activator and mediator of Th1 immunity, but its function and interaction with NLRP3 have been little studied. We found activation of NLRP3 inflammasome, increased expression of CIITA, CBP, pSTAT1, STAT1, MHC II, IFN-γ and IFN-γ-inducible chemokines (CCL1 and CXCL8), and colocalisation of NLRP3 with CIITA in Malassezia folliculitis lesions, Malassezia globosa-infected HaCaT cells and mouse skin. CoIP with anti-CIITA or anti-NLRP3 antibody pulled down NLRP3 or both CIITA and ASC. NLRP3 silencing or knockout caused CIITA downexpression and their colocalisation disappearance in HaCaT cells and mouse skin of Nlrp3-/- mice, while CIITA knockdown had no effect on NLRP3, ASC, IL-1ß and IL-18 expression. NLRP3 inflammasome inhibitors and knockdown significantly suppressed IFN-γ, CCL1, CXCL8 and CXCL10 levels in M. globosa-infected HaCaT cells. CCL1 and CXCL8 expression was elevated in Malassezia folliculitis lesions and reduced in Nlrp3-/- mice. These results demonstrate that M. globosa can activate NLRP3 inflammasome, CIITA/MHC II signalling and IFN-γ-inducible chemokines in human keratinocytes and mouse skin. NLRP3 may regulate CIITA by their binding and trigger Th1 immunity by secreting CCL1 and CXCL8/IL-8, contributing to the pathogenesis of Malassezia-associated skin diseases.


Subject(s)
Chemokines, C , Folliculitis , Malassezia , Humans , Mice , Animals , Interferon-gamma , Interferons , Histocompatibility Antigens Class II/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes , Promoter Regions, Genetic , Trans-Activators/genetics , Trans-Activators/metabolism , Chemokines/genetics , Keratinocytes
5.
ACS Nano ; 18(4): 3251-3259, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227818

ABSTRACT

The phenomenon of pressure-induced emission alterations related to complex excitonic dynamics in 2D lead halide perovskites (LHPs) has gained considerable attention for understanding their structure-property relationship and obtaining inaccessible luminescence under ambient conditions. However, the well-known pressure-induced emissions are limited to the formation of self-trapped excitons (STEs) due to the structural distortion under compression, which goes against the advantage of the highly pure emission of LHPs. Here, the pressure-induced detrapping from STEs to free excitons (FEs) accompanied by the dramatic transition from broadband orangish emission to narrow blue emission has been achieved in chiral 2D LHPs and R- and S-[4MeOPEA]2PbBr4, (4MeOPEA = 4-methoxy-α-methylbenzylammonium). The combined experimental and calculated results reveal that the distortion level of PbBr6 octahedra of R- and S-[4MeOPEA]2PbBr4 exhibits an unusually significant reduction as the applied pressure increases, which leads to decreased electron-phonon coupling and self-trapped energy barrier and consequently enables the detrapping of STEs to FEs. This work illustrates the dramatic exciton transfer in 2D LHPs and highlights the potential for realizing highly efficient and pure light emissions by manipulating the structural distortion via strain engineering.

6.
Plant Cell Rep ; 43(2): 30, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195770

ABSTRACT

KEY MESSAGE: Sucrose invertase activity is positively related to osmotic and salt stress resistance in peanut. Sucrose invertases (INVs) have important functions in plant growth and response to environmental stresses. However, their biological roles in peanut are still not fully revealed. In this research, we identified 42 AhINV genes in the peanut genome. They were highly conserved and clustered into three groups with 24 segmental duplication events occurred under purifying selection. Transcriptional expression analysis exhibited that they were all ubiquitously expressed, and most of them were up-regulated by osmotic and salt stresses, with AhINV09, AhINV23 and AhINV19 showed the most significant up-regulation. Further physiochemical analysis showed that the resistance of peanut to osmotic and salt stress was positively related to the high sugar content and sucrose invertase activity. Our results provided fundamental information on the structure and evolutionary relationship of INV gene family in peanut and gave theoretical guideline for further functional study of AhINV genes in response to abiotic stress.


Subject(s)
Arachis , Sugars , Arachis/genetics , beta-Fructofuranosidase/genetics , Salt Stress , Sucrose
7.
Asian J Surg ; 47(1): 250-255, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661477

ABSTRACT

OBJECTIVE: The purpose of this retrospective cohort study was to determine the relationship between sclerosis rim volume ratio (SVR) and the progression of femoral head collapse after non-vascularized fibular grafting (NVFG) surgery in patients with osteonecrosis of the femoral head (ONFH), investigating risk factors associated with femoral head collapse progression and establishing a predictive model to enhance clinical decision-making. METHODS: ONFH patients who underwent NVFG between January 2008 and December 2021 were analyzed retrospectively to assess the risk of post-operative collapse progression (collapse >2 mm). A logistic regression model was used to evaluate the independent risk factors associated with collapse progression, including age, sex, etiology, affected side, Japanese Investigation Committee classification (JIC), and the sclerosis rim volume ratio (SVR). SVR values was collected from three weight-bearing columns, namely SVR1, SVR2, and SVR3, respectively. RESULTS: 57 patients with 64 hips who had undergone NVFG and were followed up for at least one year were included. During the follow-up, collapse>2 mm occurred in 30 hips (46.88%). Multivariable analysis revealed that JIC (p =0.037) and SVR1 (p = 0.04) were independent risk factors for collapse progression after NVFG. The results of the receiver operating characteristic (ROC) analysis indicated that the aforementioned indices provided a satisfactory prediction of early femoral head collapse progression in ONFH patients after NVFG. The regression model using the above two indicators as a composite index showed satisfactory performance in predicting early postoperative femoral head collapse progression, with an area under the curve (AUC) of 84.6%. CONCLUSIONS: SVR is significant predictor of post-operative collapse progression following NVFG, and the composite index provides an optimal predictive value for femoral head collapse progression after surgery.


Subject(s)
Femur Head Necrosis , Femur Head , Humans , Retrospective Studies , Femur Head/diagnostic imaging , Femur Head/surgery , Japan , Sclerosis/complications , Femur Head Necrosis/diagnostic imaging , Femur Head Necrosis/etiology , Femur Head Necrosis/surgery
8.
Mol Neurobiol ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38109006

ABSTRACT

Circular RNAs (circRNAs) are a novel type of non-coding RNAs. Despite the fact that the functional mechanisms of most circRNAs remain unknown, emerging evidence indicates that circRNAs could sponge microRNAs (miRNAs), bind to RNA binding proteins (RBP), and even be translated into protein. Recent research has demonstrated the crucial roles played by circRNAs in neuropsychiatric disorders. The medial prefrontal cortex (mPFC) is a crucial component of drug reward circuitry and exerts top-down control over cognitive functions. However, there is currently limited knowledge about the correlation between circRNAs and morphine-associated contextual memory in the mPFC. Here, we performed morphine-induced conditioned place preference (CPP) in mice and extracted mPFC tissue for RNA-sequencing. Our study represented the first attempt to identify differentially expressed circRNAs (DEcircRNAs) and mRNAs (DEmRNAs) in the mPFC after morphine-induced CPP. We identified 47 significantly up-regulated DEcircRNAs and 429 significantly up-regulated DEmRNAs, along with 74 significantly down-regulated DEcircRNAs and 391 significantly down-regulated DEmRNAs. Functional analysis revealed that both DEcircRNAs and DEmRNAs were closely associated with neuroplasticity. To further validate the DEcircRNAs, we conducted qRT-PCR, Sanger sequencing, and RNase R digestion assays. Additionally, using an integrated bioinformatics approach, we constructed ceRNA networks and identified critical circRNA/miRNA/mRNA axes that contributed to the development of morphine-associated contextual memory. In summary, our study provided novel insights into the role of circRNAs in drug-related memory, specifically from the perspective of ceRNAs.

9.
J Am Chem Soc ; 145(41): 22475-22482, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37797315

ABSTRACT

Hybrid organic-inorganic perovskites (HOIPs) have exhibited striking application potential in piezoelectric energy harvesting and sensing due to their high piezoelectricity, light weight, and solution processability. However, to date, the application of piezoelectric HOIPs in ultrasound detection has not yet been explored. Here, we report the synthesis of a pair of chiral two-dimensional piezoelectric HOIPs, R-(4-bromo-2-butylammonium)2PbBr4 and S-(4-bromo-2-butylammonium)2PbBr4 [R-(BrBA)2PbBr4 and S-(BrBA)2PbBr4], which show low mechanical strength and significant piezoelectric strain coefficients that are advantageous for mechanoelectrical energy conversion. Benefiting from these virtues, the R-(BrBA)2PbBr4@PBAT and S-(BrBA)2PbBr4@PBAT [PBAT = poly(butyleneadipate-co-terephthalate)] composite films show prominent underwater ultrasound detection performance with a transmission effectivity of 12.0% using a 10.0 MHz probe, comparable with that of a polyvinylidene fluoride (PVDF) device fabricated in the same conditions. Density functional theory calculations reveal that R-(BrBA)2PbBr4 and S-(BrBA)2PbBr4 have a beneficial acoustic impedance (5.07-6.76 MRayl) compatible with that of water (1.5 MRayl), which is responsible for the facile ultrasound-induced electricity generation. These encouraging results open up new possibilities for applying piezoelectric HOIPs in underwater ultrasound detection and imaging technologies.

10.
Front Neurosci ; 17: 1251470, 2023.
Article in English | MEDLINE | ID: mdl-37732301

ABSTRACT

Irritable Bowel Syndrome (IBS) is a complex functional gastrointestinal disorder primarily characterized by chronic abdominal pain, bloating, and altered bowel habits. Chronic abdominal pain caused by visceral Hypersensitivity (VH) is the main reason why patients with IBS seek medication. Significant research effort has been devoted to the efficacy of acupuncture as a non-drug alternative therapy for visceral-hyperalgesia-induced IBS. Herein, we examined the central and peripheral analgesic mechanisms of acupuncture in IBS treatment. Acupuncture can improve inflammation and relieve pain by reducing 5-hydroxytryptamine and 5-HT3A receptor expression and increasing 5-HT4 receptor expression in peripheral intestinal sensory endings. Moreover, acupuncture can also activate the transient receptor potential vanillin 1 channel, block the activity of intestinal glial cells, and reduce the secretion of local pain-related neurotransmitters, thereby weakening peripheral sensitization. Moreover, by inhibiting the activation of N-methyl-D-aspartate receptor ion channels in the dorsal horn of the spinal cord and anterior cingulate cortex or releasing opioids, acupuncture can block excessive stimulation of abnormal pain signals in the brain and spinal cord. It can also stimulate glial cells (through the P2X7 and prokinetic protein pathways) to block VH pain perception and cognition. Furthermore, acupuncture can regulate the emotional components of IBS by targeting hypothalamic-pituitary-adrenal axis-related hormones and neurotransmitters via relevant brain nuclei, hence improving the IBS-induced VH response. These findings provide a scientific basis for acupuncture as an effective clinical adjuvant therapy for IBS pain.

11.
Int J Mol Med ; 52(4)2023 10.
Article in English | MEDLINE | ID: mdl-37594122

ABSTRACT

Toxoplasma gondii excretory/secretory proteins (TgESPs) are a group of proteins secreted by the parasite and have an important role in the interaction between the host and Toxoplasma gondii (T. gondii). They can participate in various biological processes in different cells and regulate cellular energy metabolism. However, the effect of TgESPs on energy metabolism and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) has remained elusive. In the present study, TgESPs were extracted from the T. gondii RH strain and used to treat BMSCs to observe the effect of TgESPs on energy metabolism and osteogenic differentiation of BMSCs and to explore the molecular mechanisms involved. The osteogenic differentiation and energy metabolism of BMSCs were evaluated using Alizarin Red S staining, qRT-PCR, western blot, immunofluorescence and Seahorse extracellular flux assays. The results indicated that TgESPs activated the Wnt/ß­catenin signaling pathway to enhance glycolysis and lactate production in BMSCs, and promoted cell mineralization and expression of osteogenic markers. In conclusion, the present study uncovered the potential mechanism by which TgESPs regulate BMSCs, which will provide a theoretical reference for the study of the function of TgESPs in the future.


Subject(s)
Mesenchymal Stem Cells , Toxoplasma , Wnt Signaling Pathway , Osteogenesis/genetics , Cell Differentiation , Glycolysis
12.
Blood ; 142(10): 903-917, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37319434

ABSTRACT

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Subject(s)
Angiopoietin-Like Protein 7 , Inhibitor of Differentiation Protein 1 , Leukemia, Myeloid, Acute , Animals , Mice , Angiopoietin-Like Protein 7/genetics , Angiopoietin-Like Protein 7/metabolism , Bone Marrow/metabolism , Disease Models, Animal , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Tumor Microenvironment , Humans , Inhibitor of Differentiation Protein 1/metabolism
13.
Neurochem Int ; 168: 105566, 2023 09.
Article in English | MEDLINE | ID: mdl-37339717

ABSTRACT

The 5-hydroxytryptamine 7 receptor (5-HT7R) is one of the most recently cloned serotonin receptors which have been implicated in many physiological and pathological processes including drug addiction. Behavioral sensitization is the progressive process during which re-exposure to drugs intensified the behavioral and neurochemical responses to drugs. Our previous study has demonstrated that the ventrolateral orbital cortex (VLO) is critical for morphine-induced reinforcing effect. The aim of the present study was to investigate the effect of 5-HT7Rs in the VLO on morphine-induced behavioral sensitization and their underlying molecular mechanisms. Our results showed that a single injection of morphine, followed by a low challenge dose could induce behavioral sensitization. Microinjection of the selective 5-HT7R agonist AS-19 into the VLO during the development phase significantly increased morphine-induced hyperactivity. Microinjection of the 5-HT7R antagonist SB-269970 suppressed acute morphine-induced hyperactivity and the induction of behavioral sensitization, but had no effect on the expression of behavioral sensitization. In addition, the phosphorylation of AKT (Ser 473) was increased during the expression phase of morphine-induced behavioral sensitization. Suppression of the induction phase could also block the increase of p-AKT (Ser 473). In conclusion, we demonstrated that 5-HT7Rs and p-AKT in the VLO at least partially contribute to morphine-induced behavioral sensitization.


Subject(s)
Morphine , Serotonin , Rats , Animals , Serotonin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Prefrontal Cortex/metabolism
14.
Int J Mol Sci ; 24(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37175416

ABSTRACT

Neurofilament light chain (NF-L) plays critical roles in synapses that are relevant to neuropsychiatric diseases. Despite postmortem evidence that NF-L is decreased in opiate abusers, its role and underlying mechanisms remain largely unknown. We found that the microinjection of the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) into the ventrolateral orbital cortex (VLO) attenuated chronic morphine-induced behavioral sensitization. The microinjection of TSA blocked the chronic morphine-induced decrease of NF-L. However, our chromatin immunoprecipitation (ChIP)-qPCR results indicated that this effect was not due to the acetylation of histone H3-Lysine 9 and 14 binding to the NF-L promotor. In line with the behavioral phenotype, the microinjection of TSA also blocked the chronic morphine-induced increase of p-ERK/p-CREB/p-NF-L. Finally, we compared chronic and acute morphine-induced behavioral sensitization. We found that although both chronic and acute morphine-induced behavioral sensitization were accompanied by an increase of p-CREB/p-NF-L, TSA exhibited opposing effects on behavioral phenotype and molecular changes at different addiction contexts. Thus, our findings revealed a novel role of NF-L in morphine-induced behavioral sensitization, and therefore provided some correlational evidence of the involvement of NF-L in opiate addiction.


Subject(s)
Intermediate Filaments , Morphine , Rats , Animals , Morphine/pharmacology , Phosphorylation , Rats, Sprague-Dawley , Learning , Histone Deacetylase Inhibitors/pharmacology
15.
Eur Radiol ; 33(8): 5222-5235, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36892648

ABSTRACT

OBJECTIVES: To explore whether intravoxel incoherent motion (IVIM) parameters could evaluate liver regeneration preoperatively. METHODS: A total of 175 HCC patients were initially recruited. The apparent diffusion coefficient, true diffusion coefficient (D), pseudodiffusion coefficient (D*), pseudodiffusion fraction (f), diffusion distribution coefficient, and diffusion heterogeneity index (Alpha) were measured by two independent radiologists. Spearman's correlation test was used to assess correlations between IVIM parameters and the regeneration index (RI), calculated as 100% × (the volume of the postoperative remnant liver - the volume of the preoperative remnant liver) / the volume of the preoperative remnant liver. Multivariate linear regression analyses were used to identify the factors for RI. RESULTS: Finally, 54 HCC patients (45 men and 9 women, mean age 51.26 ± 10.41 years) were retrospectively analyzed. The intraclass correlation coefficient ranged from 0.842 to 0.918. In all patients, fibrosis stage was reclassified as F0-1 (n = 10), F2-3 (n = 26), and F4 (n = 18) using the METAVIR system. Spearman correlation test showed D* (r = 0.303, p = 0.026) was associated with RI; however, multivariate analysis showed that only D value was a significant predictor (p < 0.05) of RI. D and D*showed moderate correlations with fibrosis stage (r = -0.361, p = 0.007; r = -0.457, p = 0.001). Fibrosis stage showed a negative correlation with RI (r = -0.263, p = 0.015). In the 29 patients who underwent minor hepatectomy, only the D value showed a positive association (p < 0.05) with RI, and a negative correlation with fibrosis stage (r = -0.360, p = 0.018). However, in the 25 patients who underwent major hepatectomy, no IVIM parameters were associated with RI (p > 0.05). CONCLUSIONS: The D and D* values, especially the D value, may be reliable preoperative predictors of liver regeneration. KEY POINTS: • The D and D* values, especially the D value, derived from IVIM diffusion-weighted imaging may be useful markers for the preoperative prediction of liver regeneration in patients with HCC. • The D and D* values derived from IVIM diffusion-weighted imaging show significant negative correlations with fibrosis, an important predictor of liver regeneration. • No IVIM parameters were associated with liver regeneration in patients who underwent major hepatectomy, but the D value was a significant predictor of liver regeneration in patients who underwent minor hepatectomy.


Subject(s)
Carcinoma, Hepatocellular , Focal Nodular Hyperplasia , Liver Neoplasms , Male , Humans , Female , Adult , Middle Aged , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/pathology , Hepatectomy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Liver Regeneration , Retrospective Studies , Diffusion Magnetic Resonance Imaging/methods , Motion , Hyperplasia , Fibrosis
17.
Angew Chem Int Ed Engl ; 62(12): e202218675, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36656542

ABSTRACT

The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide-range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2 PbBr4-4x I4x (MeOPEA=4-methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C-H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide-range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra-wide color gamut and high color purity which are highly useful for pressure sensing.

18.
Crit Rev Food Sci Nutr ; 63(26): 8249-8260, 2023.
Article in English | MEDLINE | ID: mdl-35333679

ABSTRACT

With the awakening of consumers' awareness of sustainable development issues and demand for terroir wines, natural wines provide opportunities for the future development of the wine industry. Microbiomes are integral to viticulture and winemaking, where various microorganisms can exert positive and negative effects on grape health and wine quality. Communities of microorganisms associated with the vineyard play an important role in soil productivity as well as disease resistance developed by the vine. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. In this review, we first examined that mimicking natural ecological cultivation to improve microbial diversity can enhance vineyard ecological services and reduce external inputs; then we examined that grape berries naturally possess all the elements of winemaking, including the nutrients for microbial growth, driving forces for the microbiota succession, and the enzymatic system for biochemical reactions; finally, we examined food safety, stability, specific interventions, and sustainability of natural wine industry-scale practices.


Subject(s)
Microbiota , Vitis , Wine , Wine/analysis , Vitis/chemistry , Yeasts , Farms , Fermentation
19.
Oral Dis ; 29(1): 195-205, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34110666

ABSTRACT

OBJECTIVES: Pleiotrophin (PTN), a secreted extracellular matrix-associated protein, plays an important role in regulating the osteo/dentinogenic differentiation potential of dental pulp stem cells (DPSCs). Our previous study has demonstrated that PTN expression in young DPSCs was is 10-fold higher than that in aged DPSCs. However, the role of PTN on the in maintaining the stemness of senescent DPSCs remains unclear. The present study aimed to investigate the effect of PTN on senescent DPSCs in vitro. MATERIALS AND METHODS: Dental pulp stem cells were isolated from human third molars. PTN was knocked down using short hairpin RNAs to study the role of PTN on the senescence of DPSCs. DPSCs with aging performance were obtained by a replicative senescence cell model was obtained by the long-term culture of DPSCs to the 15th passage in vitro (P15). We then investigated the effect of PTN on senescent DPSCs (P15 DPSCs). Real-time RT-PCR, western blotting, alizarin red staining, quantitative calcium analysis, SA-ß-Gal staining, CFSE, and cell-counting kit-8 (CCK8) assays were used to study cellular senescence and function. RESULTS: The depletion of PTN increased the ratio of SA-ß-gal-positive cells, upregulated the expression of p16, and down-regulated the expression of TERT and p-p38. Furthermore, 50 pg/ml of PTN recombinant protein rescued these changes the altered ratio of SA-ß-gal-positive cells, decreased the expression of p16, enhanced TERT and p-p38 expression, as well as telomere activity, caused by PTN depletion and long-term culture. The15th passage cells displayed typical aging characteristic, including high ratio of SA-ß-gal-positive cells, increased aging-related gene expression, decreased proliferation rate, high level of Cyclin D expression, and impaired osteo/dentinogenic differentiation potential. However, 50 pg/ml of PTN recombinant protein could partially reverse these alteration rescue these changes. CONCLUSIONS: The present study demonstrated that PTN could protect DPSCs from senescence by improving the proliferation and osteo/dentinogenic differentiation ability, probably through the p38 MAPK pathway.


Subject(s)
Carrier Proteins , Cytokines , Dental Pulp , Stem Cells , Humans , Cell Differentiation , Cell Proliferation , Cells, Cultured , Extracellular Matrix Proteins/physiology , Osteogenesis , Recombinant Proteins/pharmacology , Stem Cells/physiology , Carrier Proteins/physiology , Cytokines/physiology
20.
Micromachines (Basel) ; 13(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36557416

ABSTRACT

Low-power-consumption optical devices are crucial for large-scale photonic integrated circuits (PICs). In this paper, a three-dimensional (3D) polymer variable optical attenuator (VOA) is proposed. For monolithic integration of silica and polymer-based planar lightwave circuits (PLCs), the vertical VOA is inserted between silica-based waveguides. Optical and thermal analyses are performed through the beam propagation method (BPM) and finite-element method (FEM), respectively. A compact size of 3092 µm × 4 µm × 7 µm is achieved with a vertical multimode interference (MMI) structure. The proposed VOA shows an insertion loss (IL) of 0.58 dB and an extinction ratio (ER) of 21.18 dB. Replacing the graphene heater with an aluminum (Al) electrode, the power consumption is decreased from 29.90 mW to 21.25 mW. The rise and fall time are improved to 353.85 µs and 192.87 µs, respectively. The compact and high-performance VOA shows great potential for a variety of applications, including optical communications, integrated optics, and optical interconnections.

SELECTION OF CITATIONS
SEARCH DETAIL
...